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1 Eigenvalues and eigenvectors

Definition 1.1 Let V be a vector space over the field F and let ϕ : V → V be a linear transforma-
tion. λ ∈ F is said to be an eigenvalue of ϕ if there exists v ∈ V \ {0V} such that ϕ(v) = λ · v.
Such a vector v is called an eigenvector corresponding to the eigenvalue λ. The set of eigenvalues
of ϕ is called its spectrum:

spec(ϕ) = {λ | λ is an eigenvalue of ϕ} .

Example 1.2 Consider the following transformations:

- Differentiation is a linear transformation on the class of (say) infinitely differentiable real-
valued functions over [0, 1] (denoted by C∞([0, 1], R)). Each function of the form c · exp(λx)
is an eigenvector with eigenvalue λ. If we denote the transformation by ϕ0, then spec(ϕ0) =
R.

- We can also consider the transformation ϕ1 : R[x]→ R[x] defined by differentiation i.e., for
any polynomial P ∈ R[x], ϕ1(P) = dP/dx. Note that now the only eigenvalue is 0, and
thus spec(ϕ) = {0}.

Example 1.3 It can also be the case that spec(ϕ) = ∅, as witnessed by the rotation matrix

Mθ =

[
cos θ − sin θ
sin θ cos θ

]
,

when viewed as a linear transformation from R2 to R2.

Proposition 1.4 Let Uλ = {v ∈ V | ϕ(v) = λ · v}. Then for each λ ∈ F, Uλ is a subspace of V.

Note that Uλ = {0V} if λ is not an eigenvalue. The dimension of this subspace is called
the geometric multiplicity of the eigenvalue λ.
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Proposition 1.5 Let λ1, . . . , λk be distinct eigenvalues of ϕ with associated eigenvectors v1, . . . , vk.
Then the set {v1, . . . , vk} is linearly independent.

Proof: We can prove by induction on k (base case of k = 1 is immediate). Assume
true for k− 1 and suppose it was not true for k. Then one of the vectors, say vk could be
written as a linear combination of the others: vk = a1v1 + ... + ak−1vk−1 where the ai are
not all 0. Applying ϕ we get λkvk = λ1a1v1 + ... + λk−1ak−1vk−1. But now re-writing the
left-hand-side in terms of v1, ..., vk−1 and re-grouping, we get (λk − λ1)a1v1 + ... + (λk −
λk−1)ak−1vk−1 = 0. Since the λ’s are all distinct, this is a nonzero linear combination
summing to 0, which contradicts our inductive assumption.

Definition 1.6 A transformation ϕ : V → V is said to be diagonalizable if there exists a basis of
V comprising of eigenvectors of ϕ.

Exercise 1.7 Recall that Fib =
{

f ∈ RZ≥0 | f (n) = f (n− 1) + f (n− 2) ∀n ≥ 2
}

. Define
ϕleft : Fib→ Fib to be the linear transformation ϕleft( f )(n) = f (n + 1). Show that ϕleft is diago-
nalizable. Express the sequence by f (0) = 1, f (1) = 1 and f (n) = f (n− 1) + f (n− 2) ∀n ≥ 2
(the Fibonacci numbers) as a linear combination of eigenvectors of ϕleft.

2 Inner Products

For the discussion below, we will take the field F to be R or C since the definition of inner
products needs the notion of a “magnitude” for a field element (these can be defined more
generally for subfields of R and C known as Euclidean subfields, but we shall not do so
here).

Definition 2.1 Let V be a vector space over a field F (which is taken to be R or C). A function
µ : V ×V → F is an inner product if

- The function µ(u, ·) : V → F is a linear transformation for every u ∈ V. So, µ(u, cv) =
cµ(u, v) and µ(u, v + w) = µ(u, v) + µ(u, w).

- The function satisfies µ(u, v) = µ(v, u). (Complex conjugate)

- µ(v, v) ∈ R≥0 for all v ∈ V and is 0 only for v = 0V . This is called positive semidefiniteness.

We write the inner product corresponding to µ as 〈u, v〉.

Strictly speaking, the inner product should be written as 〈u, v〉µ but we usually omit the µ
when the function is clear from context (or we are referring to an arbitrary inner product).
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Example 2.2 The following are all examples of inner products:

- The function
∫ 1
−1 f (x)g(x)dx for f , g ∈ C ([−1, 1], R) (space of continuous functions from

[−1, 1] to R).

- The function
∫ 1
−1

f (x)g(x)√
1−x2 dx for f , g ∈ C ([−1, 1], R).

- For x, y ∈ R2, 〈x, y〉 = x1y1 + x2y2 is the usual inner product. Check that 〈x, y〉 =
2x1y1 + x2y2 + x1y2/2 + x2y1/2 also defines an inner product.

3 More on Inner Product Spaces

We start with the following extremely useful inequality.

Proposition 3.1 (Cauchy-Schwarz-Bunyakovsky inequality) Let u, v be any two vectors in
an inner product space V. Then

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉

Proof: To prove for general inner product spaces (not necessarily finite dimensional) we
will use the only inequality available in the definition i.e., 〈w, w〉 ≥ 0 for all w ∈ V. Taking
w = a · u + b · v and using the properties from the definition gives

〈w, w〉 = 〈(a · u + b · v), (a · u + b · v)〉 = aa · 〈u, u〉+ bb · 〈v, v〉+ ab · 〈u, v〉+ ab 〈v, u〉

Taking a = 〈v, v〉 and b = − 〈v, u〉 = −〈u, v〉 gives

〈w, w〉 = 〈u, u〉 · 〈v, v〉2 + |〈u, v〉|2 · 〈v, v〉 − 2 · |〈u, v〉|2 · 〈v, v〉

= 〈v, v〉 ·
(
〈u, u〉 · 〈v, v〉 − |〈u, v〉|2

)
.

If v = 0V , then the inequality is trivial. Otherwise, we must have 〈v, v〉 > 0. Thus,

〈w, w〉 ≥ 0 ⇒ 〈u, u〉 · 〈v, v〉 − |〈u, v〉|2 ≥ 0 ,

which proves the desired inequality.

For vectors in Rd, taking the square-root of both sides, another way to think of it is the
right-hand-side is the product of the lengths of the two vectors. The left hand side is the
length of v times the length of the projection of u onto v, and the inequality holds because
projection can only decrease length.

More generally, any inner product also defines a norm ‖v‖ =
√
〈v, v〉 and a hence a notion

of distance between two vectors in a vector space. This is a “distance” in the following
sense.
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Exercise 3.2 Prove that for any inner product space V and any u, v, w ∈ V

‖u− w‖ ≤ ‖u− v‖+ ‖v− w‖ .

This can be used to define convergence of sequences, and to define infinite sums and limits
of sequences (which was not possible in an abstract vector space). However, it might
still happen that the limit of a sequence of vectors in the vector space, which converges
according to the norm defined by the inner product, may not converge to a vector in the
space. Consider the following example.

Example 3.3 Consider the vector space C([−1, 1], R) of continuous functions from [−1, 1] to R

with the inner product defined by 〈 f , g〉 =
∫ 1
−1 f (x)g(x)dx. Consider the sequence of functions:

fn(x) =


−1 x ∈

[
−1, −1

n

)
nx x ∈

[−1
n , 1

n

)
1 x ∈

[ 1
n , 1
]

One can check that ‖ fn − fm‖2 = O( 1
n ) for m ≥ n. Thus, the sequence converges. However,

the limit point is a discontinuous function not in the inner product space. To fix this prob-
lem, one can essentially include the limit points of all the sequences in the space (known
as the completion of the space). An inner product space in which all (Cauchy) sequences
converge to a point in the space is known as a Hilbert space. Many of the theorems we will
prove will generalize to Hilbert spaces though we will only prove some of them for finite
dimensional spaces.
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